Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets.
نویسندگان
چکیده
A facile method was developed to enhance the visible light photocatalytic activity of bismuth oxide formate (BiOCOOH) nanosheets via Br-doping. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, the Brunauer-Emmett-Teller surface area, UV-vis diffuse reflectance spectroscopy, photoluminescence spectra, and N₂ adsorption-desorption isotherms measurement. The Br- ions replaced the COOH- ions in the layers of BiOCOOH, result in a decreased layer distance. The photocatalytic activity of the as-prepared materials was evaluated by removal of NO in qir at ppb level. The results showed that the Br-doped BiOCOOH nanosheets showed enhanced visible light photocatalytic activtiy with a NO removal of 37.8%. The enhanced activity can be ascribed to the increased visible light absorption and the promoted charge separation.
منابع مشابه
Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures.
The synthesis and self-assembly of hierarchical architectures from nanoscale building blocks with unique morphology, orientation and dimension have opened up new opportunities to enhance their functional performances and remain a great challenge. This work represents tunable synthesis of various types of 3D monodisperse in situ N-doped (BiO)(2)CO(3) hierarchical architectures composed of 2D sin...
متن کاملBiomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance.
In this paper, a Cu, N co-doped TiO2 nanosheet with increased visible light photocatalytic activity was successfully synthesized using a biomimetic layer-by-layer deposition process. The polymer, branched-polyethyleneimine (b-PEI) was used as an induction agent for the hydrolysis of titanium bis(ammonium lactato)-dihydroxide (Ti-BALDH) as well as for a nitrogen resource, and the graphene oxide ...
متن کاملGraphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light
Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...
متن کاملNitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity.
Nitrogen self-doped TiO(2) nanosheets with exposed {001} facets (ca. 67%) were synthesized by solvothermal treatment of TiN in a HNO(3)-HF ethanol solution and exhibited much higher visible-light photocatalytic H(2)-production activity than nitrogen doped TiO(2) microcrystallites with exposed {001} facets (ca. 60%) by a factor of 4.1.
متن کاملNew insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide.
Boron-doped reduced graphene oxide (B-RGO) synthesized by a facile one-step reflux route is able to exhibit significantly higher photocatalytic activity than non-doped RGO under visible light irradiation. New insights accounting for this photocatalytic activity improvement are discussed, which is distinctly different from the case of B-RGO nanoribbons under UV light irradiation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 10 شماره
صفحات -
تاریخ انتشار 2015